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Abstract
We study a two-dimensional Coulomb gas consisting of a mixture of particles
carrying various positive multiple integer charges, confined on a unit circle.
We consider the system in the canonical and grand canonical ensembles, and
attempt to calculate the partition functions analytically, using Toeplitz and
confluent Vandermonde determinants. Just like in the simple one-component
system (Dyson gas), the partition functions simplify at special temperature
β = 2, allowing us to find compact expressions for them.

PACS numbers: 05.20.−y, 71.10.−w

1. Introduction and summary

Classical two-dimensional Coulomb gas at finite temperature is a prototype example for
learning about phase transitions. There are various interesting simplified versions of the
system. One can confine the particles to move on a unit circle and yet obtain an important
toy model for various analytical techniques, which also turns out to be related to other rather
different physical systems [1]. Typically one restricts all charges to have the same strength
(which can be normalized to unity, leaving the temperature as the only parameter) but possibly
different signs. Such systems have been solved exactly in the bulk and on the circle in the
whole stability range of temperatures [2–5]4. In the simplest system (the Dyson gas [7]) all
the charges are confined on the circle and have the same sign and strength. Even the Dyson
gas at finite temperature is very interesting; among other things it gives a physical realization
of different random matrix ensembles, just by adjusting the temperature [8]. The canonical
partition function can be calculated analytically at generic temperature and has a simple form

4 Note also that a two-component system of charge ratio 1:2 was considered in [6].
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[7, 9], but the grand canonical partition function is much more complicated [1–3]. However,
at special inverse temperature β = 2 it simplifies drastically into a very simple form.

In this paper, we consider a slightly more general version of the system, consisting
of a mixture of particles carrying different integer charges, albeit with the same (positive)
sign5. This generalization makes the calculations much more complicated. At special inverse
temperature β = 2 there are again simplifications, but now even the canonical partition
function is more difficult to calculate. We develop techniques using confluent Vandermonde
determinants, Toeplitz determinants and generating functional methods, to arrive at a compact
expression for the partition function (at β = 2) for any combination of positive integer
charges6. For the grand canonical partition function, we also find a compact expression, but
it is more complicated as it still contains an infinite series for which we have not been able to
find an explicit summation.

Our analysis is mostly restricted to the special inverse temperature β = 2 and to positive
integer charges. It would be important to find generalizations of our techniques for all
temperatures. This would also allow a treatment of the case where some of the particles
carry negative charges [3–5, 10]. Another restriction of the present analysis is the number of
particles. Although our formulae are exact, they can in practice only be used for small numbers
of multiply-charged particles due to the rapidly increasing complexity of the expressions. It
is perhaps possible to overcome this restriction; instead of exact formulae one may seek
asymptotic approximations for a large number of particles, e.g. with the help of asymptotics
of large Toeplitz determinants7. Together with a generalization to arbitrary temperatures, this
might shed light on the thermodynamic limit of these systems, including phase transitions and
analytic properties of the partition functions.

The paper is organized as follows. We introduce the multi-component Coulomb gas in
the following section. In section 3, we construct the system from the one-component Dyson
gas by placing several unit charges at the same point and removing the infinite self-energy,
and present a result for the canonical partition function of the multi-component gas. Technical
details of the calculation involving manipulations of confluent Vandermonde determinants are
postponed to appendix A. In section 4 we develop the former construction into a generating
functional method to compute the canonical and grand canonical partition functions. We end
by giving an explicit example of applying our methods in section 5.

2. Setup

The Hamiltonian of the standard Dyson gas with N particles is given by

HD =
N∑

1�i<j

V (ti, tj ), (1)

where

V (ti, tj ) = −log |eiti − eitj | (2)

is the two-dimensional Coulombic potential between the particles i and j which are located
at eiti and at eitj on the unit circle, respectively. The definition can be naturally extended for
particles having multiple positive integer charges. Let us take N1 particles of charge +1, N2

5 Equivalently, one could consider a mixture of Dyson gases, at different (initial) temperatures.
6 An explicit analytic form can then be found for any given charge expression with the help of a straightforward
computer algorithm.
7 We will discuss the behavior of the partition function in the limit of a large number of +1 charges, in a different
framework (decaying branes in string theory) in a future publication [11].
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particles of charge +2, . . . , Nnmax particles of charge +nmax, labeled by positions
{
t
(1)
1 , . . . , t

(1)
N1

}
,{

t
(2)
1 , . . . , t

(2)
N2

}
, . . . ,

{
t
(nmax)
1 , . . . , t

(nmax)
Nnmax

}
, respectively. They interact via

Vnm

(
t
(n)
i , t

(m)
j

) = −nm log
∣∣eit

(n)
i − eit

(m)
j

∣∣. (3)

The Hamiltonian of this system is then given by

H =
∑
pairs

Vnm

(
t
(n)
i , t

(m)
j

)

= −
nmax∑
n=1

n2
Nn∑

1�i<j

log
∣∣ eit

(n)
i − eit

(n)
j

∣∣ −
nmax∑

1�n<m

nm

Nn∑
i=1

Nm∑
j=1

log
∣∣ eit

(n)
i − eit

(m)
j

∣∣. (4)

The canonical partition function is defined by

ZC(N1, N2, . . . , Nnmax) = 1∏
n Nn!

∫ [
nmax∏
n=1

Nn∏
i=1

dt
(n)
i

2π

]
e−βH . (5)

In this paper we analyze ZC at a fixed inverse temperature β = 2. The results are also used to
calculate the grand canonical partition function8

ZG(ẑ1, . . . , ẑnmax) =
∞∑

N1=0

(ẑ1)
N1 · · ·

∞∑
Nnmax =0

(ẑnmax)
Nnmax ZC(N1, . . . , Nnmax), (6)

where ẑi are the fugacities which correspond to the different charges. We will start by a rather
direct evaluation of the integrals over ti in (5), and then go on to study a more advanced
formulation involving generating functionals.

3. ZC and confluent Vandermonde determinants

Let us study the partition function (5) at the particular inverse temperature β = 2. We denote
zi = exp(iti). The partition function of the standard Dyson gas with the Hamiltonian (1)
becomes

ZD(N) = 1

N !

∫ N∏
i=1

dti

2π

N∏
1�i<j

| eiti − eitj |2 = 1

N !

∮ N∏
i=1

dzi

2πizi

|�(z1, . . . , zN)|2. (7)

Here the integrand ρD = exp(−2HD) is the absolute value squared of the Vandermonde
determinant

|�(z1, . . . , zN)|2 =
∏

1�i<j�N

|zi − zj |2 =
∣∣∣∣∑

{i}
εi1···iN z

i1−1
1 · · · ziN−1

N

∣∣∣∣
2

=
∣∣∣∣∣
∑
�

(−1)�
N∏

i=1

z
�(i)−1
i

∣∣∣∣∣
2

, (8)

where � denotes permutations of 1, 2, . . . , N and (−1)� is the sign of the permutation �.
Using |�|2 = ��∗ we can express the integrand as an analytic function of zi ,

|�(z1, . . . , zN)|2 =
∑

�1,�2

(−1)�1(−1)�2

N∏
i=1

z
�1(i)−�2(i)
i , (9)

and doing the integrals in (7) simply picks the constant term in (9) such that ZD(N) = 1.

8 For an attempt to calculate the grand canonical partition function of this system, but in a different framework,
see [12].
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Figure 1. (The square root of) the Boltzmann weight of a state with one doubly-charged particle
is obtained by forcing two unit charges to coincide. The infinite self-energy of the formed pair is
removed by a derivative w.r.t. the angle ε between the particles.

The above analysis generalizes to the multi-component Coulomb gas. In fact,∏
pairs

(
z
(n)
i − z

(m)
j

)nm
(10)

can be expressed as a determinant of a confluent Vandermonde matrix (see, e.g. [13]). We
present here some details of a simple proof since in the case of the Dyson gas it has an intuitive
physical interpretation. The general treatment can be found in the appendix A.

The idea of the derivation goes as follows. We start from a single-component Dyson gas
with at a lot of particles. We then form multiply-charged particles by placing several unit
charges at the same point and removing the infinite self-energy of the formed particle. Let us
start from the simplest case of only one double charge to see how this works (see also figure 1).
We take a system with N + 2 unit charges and denote τi = tN+i , wi = zN+i . Setting τ2 = τ1 + ε

we immediately get

|�(z1, . . . , zN+2)| =
∏

1�i<j�N

|zi − zj |
N∏

i=1

|zi − w1||zi − w2||w1 − w2|

=
∏

1�i<j�N

|zi − zj |
N∏

i=1

|zi − w1|2ε + O(ε2)

≡ [ρ2(z1, . . . , zN ,w1)]
1/2ε + O(ε2), (11)

where the leading result gives exactly the wanted Boltzmann weight ρ2 times the exponential
of the self-energy that we need to divide away. Notably, as depicted in figure 1 the above
procedure equals differentiation,

[ρ2(z1, . . . , zN ,w1)]
1/2 = 1

ε
|�(z1, . . . , zN+2)| + O(ε)

=
∣∣∣∣�(z1, . . . , zN ,w1, w2)

w2 − w1

∣∣∣∣ + O(ε)

−→
ε→0

∣∣∣∣ ∂

∂w2
�(z1, . . . , zN ,w1, w2)

∣∣∣∣
w2=w1

=
∣∣∣∣∣
∑
�

(−1)�
N∏

i=1

z
�(i)−1
i w

�(N+1)−1
1 [�(N + 2)−1]w�(N+2)−2

1

∣∣∣∣∣ , (12)
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where (8) was used in the last step. In particular, from (12) one sees that ρ can be expressed
as a determinant of a certain confluent Vandermonde matrix,

A =

⎛
⎜⎜⎜⎜⎜⎝

1 1 · · · 1 1 0
z1 z2 zN w1 1
z2

1 z2
2 z2

N w2
1 2w1

...
...

zN+1
1 zN+1

2 · · · zN+1
N wN+1

1 (N + 1)wN
1

⎞
⎟⎟⎟⎟⎟⎠ (13)

which is obtained from the standard Vandermonde matrix by differentiation. A lengthy
calculation gives the formula

ZC(N, 1) = 1

N !1!

∫ N∏
i=1

dti

2π

dτ

2π
ρ2(t1, . . . , tN , τ )

= 1

N !

∮ N∏
i=1

dzi

2πizi

dw1

2πiw1

∑
�1,�2

(−1)�1(−1)�2

N∏
i=1

z
�1(i)−�2(i)
i

× [�1(N + 2) − 1][�2(N + 2) − 1]w�1(N+1)+�1(N+2)−�2(N+1)−�2(N+2)
1

= 1

12
(N + 3)(N + 2)2(N + 1) =

(
N + 4

4

)
+

(
N + 3

4

)
, (14)

where the complex integrals again pick the constant term of the integrand. The result (14)
equals the one obtained by using the Selberg integral [12].

We present the straightforward, but technical generalization to any number of charges
in the appendix A. In particular, particles carrying higher charges (n > 2) are obtained by
taking higher derivatives. The final result for ZC in a general configuration is given in (A.14).
Note that the result can be generalized to some special higher values of β by adjusting the
charge configuration of the particles. This is possible if

√
β/2qi are positive integers for all

the charges qi of the system. For example, ZC for a system with β = 8 and for Ñn particles
of the charge n (with n = 1, . . . , nmax) is obtained by setting

N1 = N3 = · · · = 0; N2n = Ñn (15)

in (A.14).
Similar results for ZC as those of the appendix A can also be derived by using a more

elegant method that involves a generating functional, which we will discuss next.

4. Generating functional method

Let us define a generating functional (see the appendix B for an alternative definition of I [j ]),

I [j ] =
∞∑

M=0

1

M!

∫ [
M∏
i=1

dti

2π
j (ti)

]
M∏

1�i<j

| eiti − eitj |β. (16)

The weight of the standard Dyson gas ρD is then found by taking functional derivatives of
I [j ],

ρD(t1, . . . , tN ) = δNI [j ]

δj (t1) · · · δj (tN)

∣∣∣∣
j=0

. (17)
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For the special inverse temperature β = 2 we can use (9) to write (see, e.g. [14])

I [j ] =
∞∑

M=0

1

M!

∫ [
M∏
i=1

dti

2π
j (ti)

] ∑
�1,�2

(−1)�1(−1)�2

M∏
i=1

eiti [�1(i)−�2(i)]

=
∞∑

M=0

1

M!

∑
�1,�2

(−1)�1(−1)�2

M∏
i=1

ĵ�2(i)−�1(i), (18)

where �i are permutations of the length M and

ĵ n =
∫

dt

2π
j (t) e−int (19)

are the Fourier coefficients of the source. That is, I [j ] is a sum over the Toeplitz determinants
of ĵ ,

I [j ] =
∞∑

M=0

det T (M)[j ], (20)

where T (M) is an M × M matrix with the entries

(T (M)[j ])kl = ĵ k−l . (21)

One might expect that formula (17) can be generalized to particles with higher charges
by taking higher functional derivatives at a single point, or letting some of the ti’s in (17)
coincide. However, as above in section 3 this leads to a problem with the infinite self-energy.
Luckily, as above in (12), the self-energy can be removed by taking suitable derivatives w.r.t.
ti . For example, the weight for a state with N unit charges and one double charge can be
expressed as

ρ2(t1, . . . , tN , τ ) = ρD(t1, . . . , tN , τ, τ + ε) ε−2 + O(ε)

= 1

2!

(
∂

∂τ2

)2

ρD(t1, . . . , tN , τ1, τ2)

∣∣∣∣∣
τ=τ1=τ2

= 1

2!

(
∂

∂τ2

)2
δN+2I [j ]

δj (t1) · · · δj (tN)δj (τ1)δj (τ2)

∣∣∣∣∣
j=0

τ=τ1=τ2

, (22)

where ε−2 = exp(2Eself) was added to remove the self-energy. As seen from (22) combining
the differentiation idea of the previous section (12) to the functional derivative result (17) leads
to a ‘normalized’ second-order functional derivative at a single point,

D2 ∼ e+2Eself

∫
dt

2π

δ2

δ2j (t)
=

∫
dτ

2π

[
1

2!

(
∂

∂τ2

)2
δ2

δj (τ1)δj (τ2)

]
τ=τ1=τ2

, (23)

where the infinite self-energy has been removed.
We shall now work out a generalization of (23) for Dn with n > 2. It can be conveniently

expressed in terms of the Fourier modes ĵ n of the source j (t) (see the definition (28) below).
Let us consider the case where one particle (at eiτ ) carries an arbitrary integer charge n, which
can be added by using the result (A.6) in the appendix A. For n > 2 (22) generalizes to

ρn(t1, . . . , tN , τ ) =
n∏

k=2

1

(2k − 2)!

(
∂

∂τk

)2k−2

ρD(t1, . . . , tN , τ1, . . . , τn)

∣∣∣∣∣
τ=τ1=···=τn

= (−1)n(n−1)/2

n! [(n − 1)!]n

n∏
k=1

(
∂

∂τk

)n−1

ρD(t1, . . . , tN , τ1, . . . , τn)

∣∣∣∣∣
τ=τ1=···=τn

. (24)
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In particular, the definition in terms of derivatives can be written in various forms. Any
combination is fine as long as the sum of the orders of the derivatives is n(n − 1) and the
normalization factor K of the appendix A can be worked out. We shall use the latter form
of (24). Then the partition function reads

ZC,n(N) = ZC(N1 = N,N2 = 0, . . . , Nn−1 = 0, Nn = 1)

= (−1)n(n−1)/2

N !n! [(n − 1)!]n

∫ N∏
i=1

dti

2π

dτ

2π

×
{(

∂

∂τ1

)n−1

· · ·
(

∂

∂τn

)n−1
δN+nI [j ]

δj (t1) · · · δj (tN)δj (τ1) · · · δj (τn)

}
j=0

τ=τ1=···=τn

. (25)

The partition function can now be evaluated by using the result (20). The chain rule implies

δ

δj (t)
=

∞∑
m=−∞

δĵm

δj (t)

∂

∂ĵm

=
∞∑

m=−∞
e−imt ∂

∂ĵm

. (26)

Only the terms that include products of exactly N + n of ĵm’s give nonzero contribution which
fixes M = N + n in (20). Hence

ZC,n = (−1)n(n−1)/2

N !n![(n − 1)!]n

∫
dτ

2π

{(
∂

∂τ1

)n−1

· · ·
(

∂

∂τn

)n−1

(27)

×
M∑

m1=−M

· · ·
M∑

mn=−M

exp

[
−i

n∑
k=1

mkτk

](
∂

∂ĵ 0

)N n∏
k=1

∂

∂ĵmk

T (N+n)[j ]

⎫⎬
⎭

j=0
τ=τ1=···=τn

= 1

N !

(
∂

∂ĵ 0

)N M∑
m1=−M

· · ·
M∑

mn=−M

δ
(∑n

k=1 mk, 0
)

n! [(n − 1)!]n

[
n∏

k=1

(mk)
n−1 ∂

∂ĵmk

]
det T (M)[j ]

∣∣∣∣∣
j=0

, (27)

where δ(m, n) denotes the Kronecker delta. Here the operator9

Dn =
M∑

m1=−M

· · ·
M∑

mn=−M

δ
(∑n

k=1 mk, 0
)

n![(n − 1)!]n

n∏
k=1

(mk)
n−1 ∂

∂ĵmk

(28)

generates the particle with the charge n in the gas. The result (28) is valid for β = 2, but depends
on temperature, in general. The temperature dependence arises from the self-energies which
can be removed by differentiation similarly as above at all integer-valued inverse temperatures.
Thus (28) can be easily generalized to all β = 1, 2, . . . . However, the generating functional
can be written in terms of Toeplitz determinants as in (18) only for β = 2.

Generalization of (27) to any number of multiply-charged particles is straightforward. If
we set M = ∑nmax

n=1 nNn in the definition (28), then10

ZC(N1, . . . , Nnmax) =
[

nmax∏
n=1

(Dn)
Nn

Nn!

]
det T (M)[j ]

∣∣∣∣∣
j=0

. (29)

Inserting the definition (21) one can express ZC as a finite sum similarly as in appendix A (see
also the concrete example below).

9 Note that Dn are not unique. For example, using the first line in (24) would lead to Dn =∑M
m1,...,mn=−M δ∑n

k=1 mk,0
∏n

k=1
(−m2

k
)k−1

(2k−2)!
∂

∂ĵmk

.
10 Note that D1 = ∂

∂ĵ0
.
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Also, a compact formal expression for the grand canonical partition function (6) at β = 2
immediately follows,

ZG(ẑ1, . . . , ẑnmax) = exp

[
nmax∑
n=1

ẑnDn

] ∞∑
M=0

det T (M)[j ]

∣∣∣∣∣
j=0

, (30)

where the summation limits in the definition (28) need to be extended from ±M to ±∞.

5. An example

As a concrete example of the use of (29) continue from (27) and show how a purely
combinatorial result is derived in the case of only one multiply-charged particle. By inserting
the explicit form of det T (M)[j ] from (18) we find

ZC,n = 1

N !
DN

1 Dn det T (M)[j ]

∣∣∣∣
j=0

= 1

N !n![(n − 1)!]n

M∑
m1=−M

· · ·
M∑

mn=−M

δ

(
n∑

k=1

mk, 0

)
n∏

k=1

(mk)
n−1

×
∑

�1,�2

(−1)�1(−1)�2

N∏
i=1

δ�1(i),�2(i)

n∏
j=1

δ�1(j+n)+mj ,�2(j+n). (31)

In this special case of only one multiply-charged particle, the condition
∑n

k=1 mk = 0 follows
the others in (31), and may be dropped. The conditions �1(i) = �2(i) for i = 1, . . . , N

define a certain ‘subdeterminant’, which may be written as

ZC,n = 1

[(n − 1)!]n

M∑
1��1<···<�n

∑
�̃

(−1)�̃
n∏

k=1

[�k − ��̃(k)]
n−1, (32)

where �̃ is a permutation of length n.
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Appendix A. A general combinatorical formula for ZC

In this appendix we derive a general expression for ZC using confluent Vandermonde
determinants and compute the consequent combinatorical result. For the general multi-
component Coulomb gas, (8) reads∏

pairs

∣∣z(n)
i − z

(m)
j

∣∣2nm = |det A|2, (A.1)

8
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where A is a M × M confluent Vandermonde matrix with M = ∑nmax
n=1 nNn. A is defined

by

A = (
A(1)

(
z
(1)
1

) · · · A(1)
(
z
(1)
N1

) · · ·A(nmax)
(
z
(nmax)
1

) · · · A(nmax)
(
z
(nmax)
Nnmax

))
, (A.2)

where each M × n subblock A(n) corresponds to one particle of the gas and has the entries

(A(n)(z))ij = 1

(j − 1)!

(
∂

∂z

)j−1

zi−1 =
{(

i−1
j−1

)
zi−j if i � j

0 if i < j.
(A.3)

Equation (A.1) with the definition (A.2), (A.3) for A is a known result, but for use
elsewhere we will sketch how it follows from the standard Vandermonde determinant (8). Let
f (t1, . . . , tN , τ1, . . . , τn) be a function such that

f (t1, . . . , tN , τ1, . . . , τn) = g(t1, . . . , tN , τ1, . . . , τn)

n∏
1�i<j

(τi − τj )
kij , (A.4)

where kij are positive integers and g stays finite and nonzero as any τi → τj . Then take the
mi th derivative w.r.t. τi for each i = 1, 2, . . . , n of the both sides of (A.4) such that mi � 0
and

n∑
i=1

mi =
n∑

1�i<j

kij , (A.5)

and let τ = τ1 = · · · = τn in the end. On the right-hand side only such terms survive, where
all the derivatives act on the product. Thus

g(t1, . . . , tN , τ, . . . , τ ) = 1

K

(
∂

∂τ1

)m1

· · ·
(

∂

∂τn

)mn

f (t1, . . . , tN , τ1, . . . , τn)

∣∣∣∣
τ=τ1=···=τn

,

(A.6)

where K is the constant integer11

K =
(

∂

∂τ1

)m1

· · ·
(

∂

∂τn

)mn n∏
1�i<j

(τi − τj )
kij = K̃

n∏
k=1

mk!, (A.7)

where K̃ is the coefficient of the monomial τ
m1
1 · · · τmn

n in
∏n

1�i<j (τi − τj )
kij . To prove (A.1)

for the case of N unit charges and one particle with charge n, we apply the result (A.6) to

f (z1, . . . , zN ,w1, . . . , wn) = �(z1, . . . , zN ,w1, . . . , wn)

=
n∏

1�i<j

(wi − wj) ×
N∏

1�i<j

(zi − zj )

N∏
i=1

n∏
j=1

(zi − wj)

=
n∏

1�i<j

(wi − wj) × g(z1, . . . , zN ,w1, . . . , wn) (A.8)

and take mk = k − 1. After calculating the integer K = ∏n
k=1(k − 1)! we find

N∏
1�i<j

(zi −zj )

N∏
i=1

(zi −w)n = g(z1, . . . , zN ,w, . . . , w)

=
n∏

k=1

1

(k−1)!

(
∂

∂wk

)k−1

�(z1, . . . , zN ,w1, . . . , wn)

∣∣∣∣∣
w=w1=···=wn

= ± det(A(1)(z1) · · · A(1)(zN)A(n)(w)), (A.9)
11 The result only makes sense if K �= 0.
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where we used the determinant form of � in (8) and (A.3) in the last line to complete
the proof. The general result (equation (A.1) with (A.2)) follows by a straightforward
induction.

In the rest of this appendix, we use the explicit form (A.2), (A.3) of A to find a
combinatorical formula for ZC, the constant term in all z

(n)
i of (A.1) when expanded into

an analytic function of z
(n)
i . Note that since we only need the determinant of A and

∣∣z(n)
i

∣∣ = 1

we may multiply any column by an arbitrary power of z
(n)
i . Using in addition elementary

column operations A(n)(z) may be replaced by

(Ã(n)(z))ij = ij−1

(j − 1)!
zi . (A.10)

Then we find

|det A|2 =
∣∣∣∣∣∣
∑
{i}

εi1···iM
nmax∏
n=1

Nn∏
k=1

[
n∏

s=1

(i�(n,k)+s)
s−1

(s − 1)!

(
z
(n)
k

)i�(n,k)+s

]∣∣∣∣∣∣
2

=
∣∣∣∣∣∣
∑
{i}

εi1···iM
nmax∏
n=1

Nn∏
k=1

1

n!(n − 1)! · · · 1!
�(i�(n,k)+1, . . . , i�(n,k)+n)

(
z
(n)
k

)∑n
s=1 i�(n,k)+s

∣∣∣∣∣∣
2

,

where the Vandermonde matrices of the permutation variables in the last form are obtained
after antisymmetrization. The function

�(n, k) =
n−1∑
m=1

mNm + (k − 1)n (A.11)

is only needed for picking up the permutation variable i with the correct index.
The constant term of |det A|2 = det A∗ det A is

ZC(N1, . . . , Nnmax)

nmax∏
n=1

Nn! =
∑

{i},{j}
εi1···iM εj1···jM

nmax∏
n=1

Nn∏
k=1

1

[n!(n − 1)! · · · 1!]2

×�(i�(n,k)+1, . . . , i�(n,k)+n)�(j�(n,k)+1, . . . , j�(n,k)+n)

× δ(i�(n,k)+1 + · · · + i�(n,k)+n, j�(n,k)+1 + · · · + j�(n,k)+n), (A.12)

where δ(i, j) = δij is the Kronecker δ-symbol. For n = 1 the δ restrictions give simply
ik = jk . Using these the result evaluates to

ZC

nmax∏
n=2

Nn! =
∑

S,{i},{j}
εi1···iK εj1···jK

nmax∏
n=2

Nn∏
k=1

1

[n!(n − 1)! · · · 1!]2

× �(S(i�′(n,k)+1), . . . , S(i�′(n,k)+n))�(S(j�′(n,k)+1), . . . , S(j�′(n,k)+n))

× δ

(
n∑

s=1

S(i�′(n,k)+s),

n∑
s=1

S(j�′(n,k)+s)

)
, (A.13)

where K = M − N1, the first sum goes over all increasing functions S : {1, . . . , K} →
{1, . . . ,M} (so that i < j ⇔ S(i) < S(j)), and �′(n, k) = �(n, k) − N1.

Due to symmetry, one can add the restrictions i�′(n,k)+1 < i�′(n,k+1)+1 (for all n > 1
and 1 � k < Nn), and i�′(n,k)+s < i�′(n,k)+s+1, j�′(n,k)+s < j�′(n,k)+s+1 (for all n > 1, k, and
1 � s < n) and multiply by the ratio of numbers of terms

(∏nmax
n=2 n!NnNn!

)
. Then the result

10
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becomes

ZC =
∑

S,{i},{j}

′
εi1···iK εj1···jK

nmax∏
n=2

Nn∏
k=1

1

[(n − 1)! · · · 1!]2

× �(S(i�′(n,k)+1), . . . , S(i�′(n,k)+n))�(S(j�′(n,k)+1), . . . , S(j�′(n,k)+n))

× δ

(
n∑

s=1

S(i�′(n,k)+s),

n∑
s=1

S(j�′(n,k)+s)

)
, (A.14)

where the prime indicates the presence of the above restrictions.

Appendix B. Relation to field theory

In this appendix we present a compact formulation (for all inverse temperatures β) of the
generating functional (16) using the language of field theory. We use the operator X(t) that
lies at z = eit on the boundary of the unit disk. Its self contraction

〈X(t1)X(t2)〉 = log |eit1 − eit2 |2 (B.1)

is essentially the Coulomb potential between charges at eit1 and at eit2 . Then the generating
functional (16) reads

I [j ] =
〈
exp

[∫
dt

2π
j (t) : e

√
β/2X(t) :

]〉
(B.2)

as can be verified by using the Wick theorem. The canonical partition function of the (single-
component) Dyson gas reads

ZC,D(N) = 1

N !

〈[∫
dt

2π
: exp(

√
β/2X(t)) :

]N
〉

= 1

N !

[∫
dt

2π

δ

δj (t)

]N

I [j ]

∣∣∣∣∣
j=0

(B.3)

where the last step can be checked using (B.2).
In the case of the multi-component gas

ZC
(
N1, . . . , Nnmax

) = 1∏nmax
n=1(Nn)!

〈
nmax∏
n=1

[∫
dt

2π
: en

√
β/2X(t) :

]Nn

〉
(B.4)

so that one would naively expect that

ZC
(
N1, . . . , Nnmax

) ∼ 1∏nmax
n=1(Nn)!

nmax∏
n=1

[∫
dt

2π

δn

(δj (t))n

]Nn

I [j ]

∣∣∣∣∣
j=0

. (B.5)

However, (B.5) fails in general since the higher order functional derivatives at the same point
are not compatible with the normal ordering: the right-hand side includes self contractions
between fields at the same point. These are the self-energies of the multiply-charged particles
which were discussed in the text. Equation (B.5) holds only after the subtraction of the self-
energies, which was done for β = 2 explicitly in section 4, leading to (29). Note also that the
grand canonical partition function can be written as (see [12])

ZG(ẑ1, . . . , ẑnmax) =
〈

exp

[
nmax∑
n=1

ẑn

∫
dt

2π
: en

√
β/2X(t) :

]〉
(B.6)

which explains the exponential form of the result (30).
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